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AN OBJECT-ORIENTED FRAMEWORK FOR THE HADRONIC
MONTE-CARLO EVENT GENERATORS

N.Amelin', M.Komogorov*

We advocate the development of an object-oriented framework for the hadronic
Monte-Carlo (MC) event generators. The hadronic MC user and developer requirements
are discussed as well as the hadronic model commonalities. It is argued that the de-
velopment of a framework is in favour of taking into account of model commonalities
since common means stable and can be developed only at once. Such framework can
provide different possibilities to have user session more convenient and productive, e.g.,
an easy access and edition of any model parameter, substitution of model components by
the alternative model components without changing the code, customized output, which
offers either full information about history of generated event or specific information
about reaction final state, etc. Such framework can indeed increase the productivity of
a hadronic model developer, particularly, due to the formalization of hadronic model
component structure and model component collaborations. The framework based on the
component approach opens a way to organize a library of the hadronic model compo-
nents, which can be considered as the pool of hadronic model building blocks. Basic
features, code structure and working examples of the first framework version for the
hadronic MC models, which has been built as the starting point, are shortly explained.

The investigation has been performed at the Laboratory of High Energies, JINR.
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MOJeNH, 3aMelieHHe OJHHX KOMIIOHEHT JPYTMMH, KOH(HIypUpOBaHHE BHIXOAHBIX NaH-
HBIX, KOTOpPbIE CONEPXAT JH60 NONHYI0 HH(POPMALHIO 06 ucTopuH reHepanu# cCOGBITHS,
1160 TonbKo crneundruecKyio HHGPOPMAIHIO O KOHEYHOM COCTOSHHH B3aHMOAEHCTBHA.
KOMITOHEHTHDIN TTOAXOA CYIHECTBEHHO YBEJIHYMBAET NMPOH3BOAHTENLHOCTh pa3paboTynKa
Mozesneif, Tak Kak BCEe COCTamIAIOUIME MaKeTa pealH30BaHbl B BUAe Habopa dopMain3o-
BaHHBIX (PPEAMOB, ONMCHIBAIOIMX Pa¥IHYHbIE THIIBI KOMIOHEHT. OH r03BOJISET OpraHu-
30BaTh XOPOLIO CTPYKTYPHPOBaHHYIO GUONMOTEKY TAKHX KOMIIOHEHT C YAOGHOH cHcTeMoi
HaBMTAUMHM [0 HUM, 4TO O0ECNeYrBaeT YHHBEPCATbHbIH H rHOKHil MEXaHH3M NOCTPOEHHS
CJTOXHBIX MHOFOKOMIOHEHTHBIX Mojeneil. B naHHOR myGiMKaLuM Takxe [IpeacTarIEHBI
OCHOBHBIE COCTAR/ISFIONINE NEPBOA BEPCHU MaKeTa, IPHBEACHbBI NIPUMEPHI €ro HCTIONb30Ba-
HHA. Drta BepCHA MOXeT GbiTh PaCCMOTPEHa Kak OTIIpaBHas TOYKa Wi NocTpoeHus 6onee
CJIOXHOH H MOLLHOW CHCTEMBI.

Pa6ota BbinosineHa B Jlabopartopun Beicokux anepruit OUSIH.

1. INTRODUCTION

The object-oriented approach based on the C++ can be adopted to write the hadronic MC
event generators codes. Such approach has many advantages as compared with traditional
procedural coding (see [1]). Even more we advocate to build an object-oriented framework [2],
since we have observed many commonalities for the hadronic MC models as well as for their
usage and for their development. Framework approach is more justified, when the list of
models chosen for development is very large and potentially can be increased.

A framework [2] can be considered as well-documented thematic collection of software
to build related applications. It outlines the main architecture for the application to be
developed. The successful framework should not only support needed features and provide
default implementation and built-in functionality as much as possible, but it should also
allow an easy modification and extension of the built-in functionality. The main goal of any
framework is a reusibility. The software developer should be able to reuse written code (e.g.,
classes from the framework libraries) and the design of a framework. A framework design
is closely connected with design patterns used to document certain elements of it. A design
pattern is a concise definition of a technique that demonstrates some successful solution for
particular coding problem. Particularly, the factories and the proxies design patterns (see
book [3]) have been applied in our framework version.

We assume that our object-oriented framework for the hadronic MC generators will
be useful for two categories: the model users and the model developers (the advanced
users). We consider a hadronic model user as a person who interacts with the framework
by means of a user interface without writing and modifying of the model codes. A hadronic
model developer is assumed to work with the framework on the level of internal framework
interfaces. A developer needs the knowledge of the framework structure and libraries as well
as the knowledge of C++ language.

The main idea of our framework is to adopt the component approach. We have in mind
that such framework can be the base to build an extending library of the model components
and the model algorithms. It can allow us to extract model components from the model
components library pool and to compose them into the powerful physical models.

Below we would like to outline the hadronic model commonalities as well as the require-
ments for hadronic model package from the hadronic model user and developer. Then we



54 Amelin N., Komogorov M. An Object-Oriented Framework for the Hadronic

want to explain our framework basic ideas and shortly describe the possible user and devel-
oper sessions. To understand the framework performance there are several important parts of
its architecture that need to be explained as well as interaction of these parts. Thus we would
like to provide short explanation of the model components and their structures, the framework
control subsystem (the dispatcher) and its work, the set of classes for the parameter and input
maps, the data transfer class library, the output subsystem with the data exchange format and
the data file structure, etc. Finally, we offer several examples to illustrate the framework
work.

2. COMMONALITIES OF THE MC HADRONIC MODELS

The MC hadronic models can be used as the hadronic event generators with the main goal
to study hadronic collision phenomena as well as the source of information about hadronic
collision final states with the aim to utilize this information.

Even taking a fast look at the MC hadronic models one can see that they have much
in common. First of all they are phenomenological models having large amount of model
parameters. We can specify these parameters as the physical parameters (hadronic model
tuning constants) and hadronic model configurators. The first type of parameters gives a
possibility of changing hadronic model results. They operate similarly as the physical input.
This type of parameters fulfils very important job to store physical information about hadronic
processes. The second type of parameters also offers a possibility of changing hadronic model
results, but by changing the application logic of a physical algorithm.

Additionally to the parameters much more information should be provided for any
hadronic model. For example, the information about physical properties of particles: quark
contents, electric charges, masses, decay branchings, etc., is required. The information about
the physical properties of stable and excited nuclei: binding energies, spins, level density
parameters, fission barrier heights, etc., is also required. Usually such information is needed
in the read-only mode.

The MC hadronic models act in a similar way. They either convert an input into an
output or they use an input to give an answer to the user request. The input can be the
characteristics of particles: hadrons, partons, gammas, etc., or characteristics of nuclei: stable
nuclei, excited fragments, etc. The output can be again a set of particles: hadrons, partons,
gammas, etc., or a set of nuclei: stable nuclei, excited fragments, etc. Acting so any MC
hadronic model has to deal with four vectors (energy-momentum and time-position) and their
transformations. Any hadronic model somehow handles the n-body kinematics.

The most of hadronic models are the multicomponent models. A multicomponent model
includes other models as additional or alternative model components and has complicated
execution flow. Especially for application purposes a user needs the set of hadronic models
to obtain proper description of the hadronic reaction final states [4].

Practically all hadronic models are complicated numerical models. For them it is not
always trivial to separate «physics» from «algorithm», i.e., to separate the physical input,
physical parameters, etc., influence on the simulation results from the chosen numerical
algorithm influences. It is also often, when the same numerical algorithm can be reused
within models describing different physical phenomena, e.g., the decay of resonances and
the excited nuclei according to the relativistic phase space, the elastic scattering of partons,
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hadrons and nuclei, the search collision and decay algorithm for the hadron transport model
and the parton transport model, etc. )

The different kinds of errors can be occurred during hadronic model initialization or
model runtime. The source of errors can be due to the inconsistent user input as well as due
to the complexity of numerical algorithms. The last situation is an often unexpected situation.

Any hadronic model is required to produce different physical outputs, which should be
analyzed. The output can be only specific information about hadronic reaction final states or
complete information about the history of a generated event.

The above list of commonalities can be more extended. For example, besides kinematics
all hadronic MC models deal with random sampling of variables according to the different
probability distributions, i.e., large set of the random number generators are required. To
perform numerical operations, different mathematical utilities: equation solvers, integrators,
interpolators, etc., are needed to be employed. However, it is already clear that a hadronic
model developer should take into account these commonalities by either common code struc-
ture or common used methods or common implementations, etc.

3. TYPICAL REQUIREMENTS FROM HADRONIC MODEL
USER AND DEVELOPER ;
£

Any user of the hadronic models needs model descriptions, i.e., the reaction mechanisms,
model inputs, model parameters, used numerical algorithms, etc., should be described. Such
descriptions should be accompanied by needed examples to demonstrate model usage.

The different usage strategies provide different user requirements for hadronic model
package. A user performing theoretical or experimental study of hadronic collision needs
a possibility to «play» with chosen model, e.g., the possibility to visualize and change
model parameters, to configure model or model component, to choogg an alternative model
component, to customize hadronic model output. Thus, the mechanism to check consistency
of the user alterations should be provided. For this type of user, run control requires to have
hadronic model runtime information and exception handling mechanism.

Another type of user or applied user are mostly interested in the generated event itself.
The configured for a given type of hadronic reaction model with default values of parameters
should be offered for the applied user. The output information should be reduced until
required minimum and presented in the required form.

Of course, both types of users need to have much more, e.g., simple and self-explanatory
mechanism for hadronic reaction input preventing from errors due to the inconsistent input,
the mechanism to throw out event due to the possible severe errors at runtime, the analysis
and visualisation tools are also required to analyze the generated output, etc. Thus, for any
kind of users a user session should be convenient and productive.

The model developers may want to rebuild an existing hadronic model with aims to
extend the range of its applicability, to increase its predictive power, etc. They may want
to incorporate an existing («foreign») hadronic model for a cooperative work with other
existing models. Also they may want to build a new hadronic model running standalone or in
collaboration with other models. The enumerated situations are the primer tasks of a hadronic
model developer. But in reality to satisfy the user requirements he or she should realize the
user interfaces and even do much more. The interfaces between created hadronic model code
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and the outside world, e.g., an operational system, are also needed to be realized as well
as different adapters, if he or she wants to use an external packages, e.g., to visualize and
analyze the data. A developer should have in mind its hadronic model package portability.
The package portability means not only the portability in the sense to work on different
computer platforms, but also, it is the possibility for hadronic package to work within another
package. A hadronic model developer should facilitate the future developers tasks as well.

In the conventional approach for the developing of the hadronic MC models a developer
or several developers are working independently on a particular model. Such approach, even
if an object-oriented language is used, has several drawbacks. First of all the hadronic model
commonalities as well as designing and programming experiences are badly exploited. For
exampie, each new developer has usually started to develop a particular hadronic model
from scratch. As a result of it, each new model developer starts from the analysis and
design stages. The design duplications are manpower consuming. The different designs
have different qualities and they provide different degrees of satisfaction for the user as
well as the future model developers requirements. The design duplications lead also to the
code duplications. The particular hadronic model code quality depends strongly on the coding
experience of model developer or developers. It also becomes more difficult to learn, maintain
and extend a set of hadronic models created by different developers as well as to connect
them for collaborative work. As a rule, the hadronic model developers are not the software
experts, they are physicists and experts in their subject domains. For them it can be difficult
to find a proper solution of the specific software tasks.

Thus, we advocate the development of an object-oriented framework to take into account
hadronic model commonalities, to facilitate user work and to increase productivity of the
developer work. Within it a hadronic model developer can be more deeply concentrated on
the particular model problems. He or she needs to write much less code since an essential
part of the program already exists. He or she does not need to be a software expert to write
robust code. A new model code inherited from the framework could also be much easily
tested since it is already integrated with the rest of framework.

4. FRAMEWORK BASIC IDEAS

As was already discussed, the hadronic models as well as their usage and their develop-
ment have a lot of commonalities. We tried to separate commonality from variability in the
hadronic model interfaces and application logics during the framework development.

Here we begin to describe the first version of the hadronic MC model framework, which is
suggested as the starting point. Let us explain the framework basic ideas and its collaboration
with users and model developers. ’

We made an attempt to formalize hadronic model components as unit blocks to construct
a composite hadronic model. All such blocks can be stored as an exendible collection of the
model components. The definition and design of the unit component blocks offer a universal,
flexible and powerful mechanism for a hadronic model construction. The question is how to
define such components? Any model component can be structured into an interface part and
the part presenting its application logic. The interface part of the model component allows
component collaborations. With the help of this part a user can also handle model component
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parameters, its input-output, its execution process, etc. Such formalization becomes visible,
when we provide the component interface standards. ,

Particularly, from model components we can separate the components with the «runnable»
interfaces, i.e.. they include methods to execute them and support user input. We call a model
component as the main component if it uses other model components and supports the runnable
interface.

On the other hand, the interface standards, if they are required, dictate a hadronic model
developer to follow definite rules during a component implementation. These rules can be
taken into account by means of the component frames, which are created for the command
line user interface, or by means of the component wizards in the case of the graphical user
interface. The component wizard helps us to create a particular case of a component. We
call it the empty or skeleton component. A developer can also create a skeleton using
the component frames and performing the required editions. Thus, the interface standards
facilitate the developing of the model component interface part.

A hadronic model developer should mostly work on the implementation of a particular
application logic. The part, which presents an application logic can also be universal. It is
known that the same application logic can be used in several physical models. Below we will
touch more details of the application logic universality.

In the case of developing a composite hadronic model there are very important questions
about the component control, their collaboration and their collaboration with a user. Par-
ticularly, a component collaboration should allow substitution of variable implementation of
different application logics (e.g., the alternative components) via a common interface. Again
the interface standards help us to suggest mechanism for model component control and their
collaboration. This mechanism is provided by the framework control subsystem. The control
subsystem is implemented by means of two central concepts of the framework: the resource
and the dispatcher. The resource contains static information about model components. The
dispatcher is the heart of our framework. It loads components, obtains information about
components, creates needed files, and so on. The dispatcher is the chief of all components. It
controls all inner model processes at runtime. But any model component is controlled by the
dispatcher in the same way by means of the set of standard messages. The dispatcher helps
us to organize multithread work of our framework. The dispatcher concept allows an easy
way to integrate our framework into the «more global» package, e.g., the GEANT4 [1] or the
ROOT [5].

Our framework is a tool to perform simulation of hadronic interactions. Therefore, we
have suggested a uniform and powerful output subsystem with main goal to facilitate simulated
data visualisation and analysis. This output subsystem is based on the extendible data transfer
class library.

The data transfer class library as well as the application logics of the model components
are closely connected with the problem domain. The objects of the data transfer classes are
used for an information exchange between hadronic model algorithms. These classes help us
to store the history of an event generation and to implement the universal model algorithms.
Again the data transfer class library helps a hadronic model developer to be concentrated on
the application logics development.

At the end of this chapter we want to say a few words about the object identifiers. Any
object of our framework has its unique identifier (/D). At the moment any ID can have the
unsigned value, thus we have a possibility to assign more than 4 billion different values. The
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unsigned values are very convenient for searching and navigation. The knowledge of object’s
ID helps us to obtain full information about this object. The object identifiers are heavily used
in our framework subsystems. Particularly, we are developing the framework help subsystem
based on the HTML. It is possible due to that the unique object identifiers can be binded with
the HTML files describing objects.

5. POSSIBLE USER AND DEVELOPER SESSIONS

For communications with user we have developed the user interfaces. Here we explain
the user-framework interaction mainly by means of the command lines. However, a user
using the Windows platform can run the graphical user interface.

First of all a user is able to visualise the hadronic model component list and choose or
register needed component. The HTML based help subsystem under development will offer a
user needed model documentation. After model component registration a user can visualise
and edit the default model parameters and the framework will provide parameter consistency
check. The visualised set of the hadronic model parameters can have a tree structure with
the leaves are groups of parameters. The hadronic model parameter set can have three states:
default state, current state and the state, which includes one or several previous states stored
in a file. Thus a user can either keep a default value of a parameter variable or change this
value. Also a possibility for user to store current value of parameter variable on a file is
offered. It can be done in order to give the «undo» possibility, i.e., a user will always be able
to get back the old parameter values.

A hadronic model can be configured by its parameter edition. Even more advanced
possibility for a user to configure a composite model is offered. He or she is able to
substitute a model component by an alternative model component without changing the code
(see the component substitution chapter).

Then a user can customize output. Similarly as a parameter set, the output set can be
a tree, where leaves are channels and branches are groups of channels. Each channel or
group of channels can be in the enabling or disabling states. By default they are forced to
be in the disabling states. Using this scheme we offer a possibility for a user to control the
output information. For example, preparing an output of a particle object we can obtain either
full information about a particle, i.e., its momentum, its position, its encodings, its spin, its
electric and baryon charges, etc., or only its momentum and its position. Also in the case of
a multicomponent model to obtain the history of the generated event a user can activate any
hadronic model component or all hadronic model components to write information about its
work.

The input set is organized similarly as the parameter set since both the input data and the
parameters require that their values should be checked. For each particular model the input
maps (see an example of input maps in chapter 17) are offered and a user will be able to edit
them and again the framework will check the input consistency.

For particular hadronic model a user is able to overload default aggregated component
set, default parameter set, default output configuration. It is useful, e.g., in the case, when a
hadronic model was tuned for the best description of experimental data and a user is interested
only in generated final states. Such situation is typical if a model is used for the applied
purposes to predict missing information about hadronic reactions.
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The hadronic model run control is offered by the model runtime information: information
messages, warning messages and error messages. ,

Since the framework has uniform output subsystem it helps us to create the generated
data analysis and visualisation subsystem. Now simple data filters and some plot facilities
are provided for the user, who uses the graphical user interface. We should note that within
the graphical user interface the user-framework collaboration is similar as in the case of
the command line user interface. It is going through the parameter, input, output, runtime
information, etc., graphical windows. In this case a user deals with several threads, e.g., the
run process or active model component thread and the data analysis thread. In the command
line user interface, a user operates with the corresponding ASCII files.

Another possibility of performing more detailed analysis of simulated events is the use
of an external analysis tools. The output subsystem is able to prepare the output data to be
suitable as the input (macros) for the ROOT [5] analysis and visualise tool.

For efficient work a developer can learn the set of framework classes (see also chapters
below): NMAlgorithm class as the starting point to implement different model components,
several classes, such as the NMDoubleParam, the NMIntParam, etc., to handle model para-
meters and inputs as well as NMHistory, NMBaseParticle and NMPrimerParticle classes to
extend the data transfer class library if it is needed. For other framework classes a developer
can learn only their headers. It is also better if a developer makes the acquaintance with the
hadronic application logic library to avoid a universal algorithm duplication. The implemen-
tations of some classes are closely connected with the interface system, e.g., command line
or graphical user interface. Their implementation should be hidden from a model developer
since we may want to change them without affecting the developer’s codes.

To help a model developer we provide several model components frames as well com-
ponent documentation frames. An example of such frame can be found in the appendix
chapter. If a developer wants to implement a new model or a new model component, e.g.,
as an alternative model component, he or she can choose suitable model component frame,
edit it according to the frame comments and implement required methods. The component
documentation frames help a developer to create the help documentation about a &dmponent.

The simplest case of a developer’s work is that a developer wants to implement foreign
working code as an alternative model component. Particularly, to implement foreign runnable
component code a developer has to use the ninnable algorithm frame, where only two methods:
OnRegisterInputMap() and OnRun() (see the appendix chapter) should be implemented. A
developer has also to define the input map and map contained variables and register them by
OnRegisterInputMap().

L

6. MODEL COMPONENTS AND THEIR STRUCTURES

We distinguish different kinds of model components: the algorithm component, data
analysis component, table component, etc. Each type of component can have its specific
properties and methods. Such approach has some advantages for a model developer, since we
can provide the standard frames for all components to facilitate component implementations.
It is also rather flexible to allow the implementation of complicated model [6]. From the
hadronic model developer point of view the most important model component is the algorithm
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component. Let us explain the details of its structure. Below we will call it shortly the model
component or the component.

For this component we separate the component factory and the component static infor-
mation parts. We need the component factory part, because the creation of objects is very
important question since we want to have a possibility for dynamic binding, i.e., substitution
of a component by the alternative component without changing the code as well as object
creation only, when it is needed. Another aspect of this question is connected with model
component object collaboration (see below). There are two ways, when one object uses
another object. In the first case we can declare it as a member and we cannot substitute it
during run time. In the second case we declare a pointer to another object and we will geta
runtime substitution. Thus we can substitute this object by its child or derived object. But we
have to assign this pointer. As a rule it can be done by a set method or using a constructor.
It is not always good because we may want to use a complex object and we need to know in
aggregating object all information about aggregated object. To avoid such problem we can
create the proxy object [3] of an object, which is planned to be used. It can be a pointer to
the component identifier (/D). During construction time all proxy objects are gathering into a
list. As a result, each object knows, which aggregated objects can be used. But how can we
create these aggregated objects? It can be done by means of a factory method [3].

The component static information part or component resource part contains the informa-
tion, which is needed to create this component. It also contains the pointers (references) to
documentation. Besides the component factory and its static information parts, a component
can include methods and data for model parameters, model input maps and model output
configurations as well as the execution or run methods.

To provide more flexibility for a developer, we also classify the algorithm components
according to their interfaces: the so-called «runnable» components, which include the execu-
tion and input methods. Such components can be used as the separate models or as the main
model components, which include aggregated components. We distinguish also the «general»
components, which can be used only as the aggregated components. We should note that
any runnable component can be used as a general component. We classify the «virtual»
components, i.e., the «virtual runnable» or «virtual general» components, which are similar to
the «runnable» and «general» components. The difference between them is in the component
factories. It is not possible to create the virtual component objects.

At the end of this chapter we would note that the NMAlgorithm class is the base
class to derive the algorithm component classes (see the appendix chapter), which should be
implemented. Particularly, it supports three methods: OnOverloadDefaultProxy() to overload
the default component, the OnOverloadDefaultParam() to overload default parameters and
OnOverloadDefaultOutputConfig() to overload default output configuration.

7. FRAMEWORK CONTROL SUBSYSTEM

Let us imagine that all needed model components are implemented. How is the user’s
interaction with the framework libraries provided? How will components collaborate? As we
have already mentioned, all interactions between the framework libraries and user interface
system as well as model component collaborations are provided by the framework control
subsystem. It is hidden from a user. We denote such control subsystem as the dispatcher.
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Thus, the dispatcher is a shell between the user interface and the framework libraries. For
the command line interface, the framework control subsystem is currently implemented as
the NMDispatcher class, which keeps the pointer to the model component base class as well
as the vector of the model component factories. It includes many methods (see chapter 17)
to support several phases of the user-framework interaction: creation phase, edition phase,
execution phase and destruction phase. Particularly, it allows one to obtain full list of the
model components included into the framework. The dispatcher object can load, run and delete
a model component. The dispatcher object checks a possibility of substituting a component
by an alternative component. The dispatcher object also manages parameter and input writing
and reading. It manages writing and reading of the output configurations, etc. There are
two groups of methods in the dispatcher. The first group consists from the methods needed
to receive the information about framework library contents and to control this information,
e.g., the method to obtain the component tree from the global list. The second group are
the methods, which control currently loaded components. The dispatcher methods are named
according to the rule: Action + ComponentType(), e.g., LoadAgorithm(), LoadAnalyzer(),
LoadTable(), DeleteAlgorithm(), etc., since we have different model components.

8. PARAMETERS AND INPUT SUBSYSTEMS

Our framework has the set of classes to support model parameter and model input
handlings. A developer to implement the parameters of his model component has to define
parameter type, assign its default value and a comment for it. Provided model component
frames facilitate this task for a developer. After model component development a model user
will get a possibility to edit parameters under the framework control. A developer can also
bound parameter values by means of some parameter method overloading.

To solve the task of the input data set we suggest the input maps based on the lists of
simple data types. By means of the input maps we organize not only the uniform input for
a model user, but we also save developer time since our framework performs needed input
map data converting.

The NMParam class initiates the parameter/input class branch. This class keeps common
properties of parameters, e.g., parameter names, methods to write parameters into data file, to
read parameters for their visualization, to check parameter consistency, to reset parameters,
etc. The NMParam class gives rise to the NMParam group of classes: HM***Param and
NMParamGroup. The NMParam realizes common features of a simple parameter. The
necessity of such a class is connected with difference between writing into file for a simple
parameter and for a group of parameters independent from parameter type. The NM***Param
presents parameters of different types. The stars in the parameter class name indicate that
any name can be used according to the rule: Bool + NM***Param = NMBoolParam. The
NMParamGroup class allows us to join parameters into named group.

As we already mentioned the parameters are structured like tree and have different states.
A model component can contain only one group of parameters. Thus, the parameters tree is
the component tree, where leaves are groups of parameters. The parameter tree is created
by the proxy component tree. There are default state and current state. Also several former
states can be stored in a configuration file. If the configuration file is not empty, the last state
of a parameter tree will be loaded from this file.



62 Amelin N., Komogorov M. An Object-Oriented Framework for the Hadronic

Similar structure is alsp suitable for model input. To support input maps we use the
NMInputMap class, which is a redefinition of the NMParameterGroup class.

9. MODEL COMPONENT SUBSTITUTION

Our framework approach allows substitution of model components by the alternative
components without changing code. It gives a user the possibility to change hadronic model
structures. Two types of the substitution are possible. The first one we call the static
substitution. Let us image the next situation. There are several model components that have
been developed. We denote them as A, B, C and CI. The component A uses the component
B and the component B uses the component C. When a developer creates these components,
he or she knows nothing about the component CI, which is an alternative for the component
C. A user applying the method OnOverloadDefaultProxy(} in the component A can force the
component B to use the component C/. The implementation of the OnOverloadDefaultProxy()
method can look as follows:

ClassA: :0OnOverloadDefaultProxy()
{
OverloadProxy(ID_C1, ID_B, 0)
}

The dynamic substitution can be performed at run stage. For example, a user would like
to use the component C instead of the component CI. He or she is able to solve this task by
means of our framework. Within the command line interface version it can be done by edition
of the parameter file, which has the .nmp extension (see also chapter 17). The parameter file
edition includes the replacement of the lines related to the component C/ by the lines related
to the component C. From the C++ programmer point of view such substitution is provided by
the subclassing mechanism, i.e., alternative components need to have a common base class.
The developed component frames of our framework supports such subclassing.

10. DATA TRANSFER CLASS LIBRARY

The data transfer classes organize the data transfer between model components. This is
the first goal to develop such library. It helps us to store the history of an event generation.
Any object of the data transfer class supports serialisation, i.e., it has methods to read and
write its state. The data transfer classes use the exchange data format described below. Thus,
the data transfer class library helps us to create uniform and powerful output subsystem to
obtain the result of simulation. For this purpose any data transfer class is derived from the
NMHistory class with the aim to obtain an output of the generated event history. It has two
methods Config() and Out() that are implemented to write their objects states. (See examples
of the method implementations in the framework output subsystem chapter). This is the
second motivation to create such hierarchial library.

We would stress that the presence of these classes allows a developer to pay more
attention to the algorithmic logic part of a hadronic model development, because a developer
need not think about details of the input-output operations.
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A navigation system can be offered (we are working on it) and a developer can navigate
through the data transfer classes. He or she can visualise any such class and apply the data
transfer class wizard with the aim to extend the data transfer class library.

The data transfer classes are tightly connected with the hadronic models domain. The
data transfer class hierarchy represents physical objects from this application area. They
describe three groups of such objects. The first one can be called the simplest objects or
the objects without inner structure. Then we can separate collections of the simplest objects.
Describing the simplest object we do not need the information about its inner structure. We
have developed the NMBaseParticle class. It has two members: the 4-momentum and the
4-position, and represents the relativistic phase space point object or relativistically moving
point object. This class can be considered as an example of the data transfer class, which
represents the simplest object. Other examples of such classes, which are derived from
the NMBaseParticle class, are the NMParticle class, representing the elementary particles,
the NMParton class, representing the quarks and gluons, and the NMSimpleNucleus class,
representing a nucleus without its nucleon structure. The simplest objects can be combined
into the different object collections. The members of a collection do not have structural
dependences. For example, object collections can be created using the NMBaseParticleVect,
the NMParticleVect, the NMPartonVect and the NMSimpleNucleusVect classes. They keep
arrays of the pointers to the simplest objects. The composite objects need the information
about their internal structure. The classes, representing such objects, have the collection
classes as the members or they are derived from the collection classes. As the examples
of this group of classes we can consider the NMNucleus class, which has as a member the
NMParticleVect class, and the NMExitedString class, which has the NMPartonVect class
as a member.

For many applications of any class hierarchy it is very convenient to have a base class,
which joins all classes. As a rule, it is pure virtual class. It factorizes the common prop-
erties of all objects of this hierarchy. The relativistic phase space point object is commonly
used in the high energy hadronic MC models. In our data transfer class hierarchy we use
for that the NMPrimeParticle class, which represents the most operations needed to work
with the relativistic phase space point. This class gives the rise to all other classes of the
hierarchy.

Our data transfer classes represent not only the dynamical properties of the physical
objects (momenta, positions, etc.), but also their static properties (charges, encodings, etc.).
For example, the NMParticle object describes the dynamic properties of the elementary
particle and has a pointer to the static object, which keeps the information about mass, decay
branchings spin, etc. The static information is stored as tables. We have other tables, e.g.,
the interaction cross section table. We are working on the service tools (framework database
service tools) to support tables within our framework.

At the end of this chapter we want to mention another important motivation to create
the hierarchial library of the data transfer classes. It is connected with the algorithm logic
universality. The degree of universality of an algorithm is determined by the amount of
needed input-output information. Our data transfer classes have an hierarchial structure, the
most universal algorithms are those, which use as input and output the objects of the node
data transfer class.
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11. FRAMEWORK OUTPUT SUBSYSTEM

The output phase is the most complicated phase of interaction between the framework
and a user. Let us make several things to be explained before description of the output phase.

There are different approaches to write and read data. One of them is that an object writes
and reads data by itself. In this case we need this object to be created before reading. The
configuration to be read is provided by this object class and we need not store the configuration
on a file. But in such a case the data stored on a file cannot be read from outside of a package,
which includes the object class. We have decided to use another approach. We write the
configuration to be read at the beginning of a file. This configuration is based on the list of
basic types. These types can be read within any other package.

We have developed the framework input-output file system to avoid dependence on the
different platforms. Particularly, it allows us to open and close a file, to read data from a file
and to write data on a file.

Let us consider the output data structure, which can be written on an output file. It includes
the output file header, an extra information, the channel definition, the event configuration
and the data part.

The output file header is needed to identify the output file. It contains the identifier field,
the file version and some offsets to the other parts of file as the channel definition, the event
configuration and the data. An extra information, which can be used by a developer for some
reasons, will be placed just after the header.

We need a universal data exchange mechanism, which is independent of particular lan-
guage or package. For this purpose we suggest a format for data reading and writing. A
variable is stored in a channel with its own identifier. With each channel identifier we bind
the channel type and some extra information to organize convenient user interface. Several
channels can be grouped into a group of channels with unique group identifier. Each identifier
of channel or group of channels can have prefix REP. It signals that given channel or given
group of channels is repeatedly stored. To describe a channel we use four fields: ChannelID,
FullName, ShortName, and UnitName. The ChannellD field keeps information about the
channel type and it can also be used in the help subsystem. The channel full name FullName
field is used by the user interface. The ShortName field can simply keep the short name of a
channel. For example, the X component of the Lorentz vector momentum can be presented
as follows: 1003, «X-component of Lorentz vector», «px», «GeV». The ShortName field was
also introduced to be a variable name of this channel. Using this field we can customize the
output data structure with the aim to produce output, which can be accepted as an input for
the foreign package. For example, it helps us to create the ROOT [5] macros. The last field
UnitName informs a user about the physical units of channel variable values. To support
channels we have developed the NMChannelDef class and its vector NMChannelDefVect
class.

We have introduced program event objects. We define a program event object as an unit
of information to be written. To support it we have developed the NMProgramEvent class.
Each program event object has its own EventID and can have its name to be used in the
user interface. In order to read the binary data from the output file we have to know their
configuration. The configuration can be found by means of the EventID in the configuration
part of the file. From this point of view the EventID can be considered as an identifier of the
event object type.
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The configuration is array of ChannellD, which are included in this event. Each model
algorithm component supports the method OnRegisterOutputConfiguration(). We use this
method to register configurations of program events, which can be written by this compo-
nent. The registration procedure is very easy. It adds the channel identifiers or group of
channel identifiers to the array. An example of the method OnRegisterOutputConfiguration()
implementation can be found in chapter 17.

We said already that the data exchange between the model components is supported by
the data transfer classes. These classes play an important role in the output subsystem. In
order to solve the task of writing event configuration to the output file all these classes have to
realize the method Config(). We present below two examples of this method implementations.

void NMBaseParticle::Config(NMProgramEvent& ProgramEvent, bool bHistory)
{
ProgramEvent .AddGroup(bHistory, 10, true, "Moving point",
"MovePoint") ;
ProgramEvent .AddDouble(101, true, "X-position”, "X",

"fermi") ;

ProgramEvent.AddDouble(102, true, "Y-position", "Y",
"fermi");

ProgramEvent.AddDouble(103, true, "Z-position", "Z",
"fermi") ;

ProgramEvent.AddDouble(104, true, "T-position", "T",
"fermi") ;

ProgramEvent .AddDouble (105, true, "X - component of
Lorentz momentum", "PX", "GeV");

ProgramEvent . AddDouble (106, true, "Y ~ component of
Lorentz momentum", "PY", "GeV");
ProgramEvent .AddDouble(107, true, "Z - component of
Lorentz momentum", "PZ", "GeV");
ProgramEvent.AddDouble (108, true, "Energy", "E", "GeV");
ProgramEvent . AddEndGroup () ;
}

void NMParticle::Config(NMProgramEvent& ProgramEvent, bool bHistory)
{
ProgramEvent . AddGroup(bHistory, 30, true, "Particle");
NMBaseParticle: :Config(ProgramEvent) ;
ProgramEvent .AddDWord (301, true, "Encoding", "Enc",
"Encoding") ;
ProgramEvent .AddDouble (302, true, "Mass", "M", "GeV");
ProgramEvent . AddDouble (303, true, "Charge", "M");
ProgramEvent . AddEndGroup () ;
}
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The data transfer class objects do not exist, when we create the output configuration, as a
result, these methods have to be the static methods.

We define event configurations before run session. It gives us a possibility to control
the output. Particularly, we are able to protect any channel or group of channels from their
output. By default all channels are open and all program events are closed for their output
except the program events from the main model component.

The framework supports also two predefined event objects, which allow us to write to
output the values of input map and parameter of model components, which are executed in
the current run session. For them the registration of channels is performed automatically.
However, a user is able to mask these events or some their channels with the aim to forbid
their output.

There are different Out() methods, which are responsible to write the data part of the
output file. We should note that before to write data on the output file each such method
checks that there are channels, which open for the output. As we already mentioned each data
transfer class has such method. For example, for the NMBaseParticle and the NMParticle it
has been implemented as follows:

void NMBaseParticle::0ut (NMOutputConfighk Config, NMFile& File)
{
BEGIN_OUT_GROUP
{
0UT(X());
OUT(Y());
ouT(Z());
QUT(T());
QUT(PX());
OUT(PY());
OUT(PZ());
OUT(EQ));
3
END_OUT_GROUP;

void NMParticle::0Qut(NMOutputConfig& Config, NMFilek File)
{
BEGIN_OUT_GROUP

{

NMBaseParticle::0ut(Config, File);
OUT(Encoding());

OUT(Mass());

OUT(Charge());

}

END_OUT_GROUP;
}
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In the above Out() method example the OUT(Variable) is the macro to write a Variable.

Let us say a few words about the output of the generated physical event history organi-
zation using as an example the NMProgramEvent class. It has also the Out() method. The
Out() method of NMProgramEvent class writes on output file the header (EventID, Event-
Counter, and HistoryCounter) and then binary data. Each call of the Out() method can be
considered as the event object creation and it can be identified using the EventCounter. There
will be no event objects written on the output file with the same value of the EventCounter.
The HistoryCounter field is used to make connection between event objects and model com-
ponent objects, which are responsible for the event object creation. The HistoryCounter
variable is the only a member of the NMHistory class. With the aim to obtain the output of
the generated physical event history, we have also derived all data transfer classes from the
NMHistory class. But in some cases an event object can contain not only objects of the data
transfer classes. There will also be event objects, which do not contain any object of the data
transfer classes. If so, we can also write within events the values of the HistoryCounter as a
member.

At the end of this chapter we want to discuss the generated data analysis procedure,
which can be performed within the graphical user interface of our framework. We consider
this procedure as the three-steps procedure. At the first step one can perform the structure
filtering since the data are organized as a tree, where nodes are enumerated by their ID. It
gives us a possibility to select data by using only the data structure information, which is
stored at the beginning of data file. The next step is to perform the data sensitive filtering,
i.e., one can select data using themselves. The last step is that selected data can be stored and
presented as the one-dimensional histogram and two-dimensional plots.

12. RUNTIME INFORMATION

Our framework supports the runtime information output. By means of it the model com-
ponents inform about their execution processes during run session. The runtime information
is simple text based information. There are three types of the runtime messages: information
messages, warning messages, and error messages. The information messages are used to
tell about normal execution process. The warning messages inform a user about potential
errors or other situations, which are able to destroy normal execution process. The execution
proccess will be continued after the appearance of the warning messages. The error messages
appear, when the execution process will be aborted. The error messages inform also a user
about place and type of the error. The framework detects itself the information about place
of an error and a developer need not make special efforts to solve this task.

A user has a possibility to control the runtime information output. Particularly, he or she
can either totaly suppress the information messages or suppress the information messages from
some model component objects. The warning messages are divided into some groups. A user
can suppress any group to be appeared in the output or overload any group to produce error
messages. Each wamning or error message has also its own unique WarningID or ErroriD
identifier. It allows us to help a user or a developer to obtain the full information about the
reason of warning or error.

Let us provide more details about the possibility of obtaining the runtime information. We
have developed the NMOwner component base class, which includes the methods: Message(),
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Warning(), and Error() to support runtime messages. The error method calls also exception
to close the execution process. All objects of the model component classes have pointers to
their context objects. The work to organize the runtime output is performed by the context
object of a model component. The dispatcher creates the context objects and informs them,
where the runtime information has to be placed.

13. FRAMEWORK HELP AND DOCUMENTATION

The help subsystem based on the HTML is under development as well as printed version
of the framework manual [6]. Such subsystem is needed to help a user and a potential
hadronic model developer. They can obtain parameter description, input description, physics
description, numerical algorithm description, etc. The help subsystem from a hadronic model
developer point of view can be considered as a platform to explain how to develop a model
code.

As we already said, any object of our framework such as component, parameter, error
message, etc., has the unique /D. It allows us to bind these ID with the object describing
HTML files. For version with the graphical user interface we will provide some tools to
work with the help information, e.g., there is a possibility of obtaining the context of help
information. This help subsystem will be developed with the aim to provide either convenient
access for help information or uniform way to add new help information by means of typical
documentation frames. The user of help subsystem need not know the details of its work in
order to find or add help information. The component documentation frames allow one to
present information for the standard appearance. These documentation frames are different
for different types of model components. They are developed in the complement of model
component frames. A model component developer must follow the instructions, which can
be found in the documentation frames. There are also classes such as the NMDeveloper and
the NMDeveloperList, which organize the personal information about model developers, and
the NMWEBDocument and the NMWEBDocumentList classes, which assist to manage the
model documentation on the Web. See also the example of runnable component frame in
chapter 17.

14. COMPONENT LIBRARY

Discussing different aspects of the hadronic model framework, we have paid attention
mostly to its interfaces. But the real hadronic model component to be used for the reaction
simulation should have its application logic. The hadronic model algorithm transforms an
input into an output. The objects of the data transfer classes are served as the input and
output objects for the model component objects. In the runnable model component frame the
OnRun() method name was chosen as the standard name for the transformation method. Thus,
we assume that the implementation of this method will be the main job of a hadronic model
developer. It usually requires hard developer’s work and needs not only the software testing,
but also the physical testing. The large number of the hadronic model runnable components,
e.g., such as the NMElasticScatterer and the NMPomeronPartonStringModel (see for model
physics description [4]) as well as hadronic model virtual and general components have been
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already implemented and included into the component library. The component library will be
described elsewhere [6].

15. UTILITY CLASS LIBRARY

The utility classes contain useful data and methods: random number generators, different
integrators, equation solvers, physical units and constants, etc., which are often used. These
classes accumulate the working experiences of the hadronic model code programmers. Some
of such utility classes can also be found in the CLHEP library [7]. Very convenient strategy
to use physical units and constants was adopted from the GEANT4 [1].

16. CONCLUSIONS

We have shortly discussed the first version of the object-oriented framework for the
hadronic MC event generators. We made an attempt to explain that our framework has
different features to facilitate the hadronic model user and developer works. As the framework
name we suggest to use the NiMax word. _

In conclusions, we would only stress the main point of our approach to develop the
hadronic MC event generators. It is the component approach, when a complex hadronic
model is composed of small and simple pieces, that are self-contained entities (see, e.g., the
book [8}). The component approach has many advantages and we can enumerate several of
them. It allows us to formalize the particular type of components by separating interface
part and application logic. We have offered different component frames for hadronic model
developers. Thus, a model developer should work on the component application logics
and each component application logic can be developed independently of other component
application logics. Model components can be composed in a variety of ways and the new
components with their peculiarities can be added, that offer a flexibility for the construction of
a powerful hadronic model. The different implementations of a component application logic
can be interchanged at runtime enabling a hadronic model user to obtain the needed model
properties without redesigning a model and writing the model code.

Working on the framework we have obtained good software experience and we understand
that first framework version should be more tested, improved and extended to be the successful
tool for its user and consider it as the starting point. We hope also that our experience to
develop the hadronic model framework as well as the framework ideas can be applied not
only in the hadronic model application domain, but can be suitable to develop other similar
applications.

Finally, we would like to thank the members of the GEANT4 hadronic group for the
discussions with respect to the hadronic MC generator design. One of us (N. Amelin) is
grateful for S. Giani, who invited him to work on the hadronic models for the GEANT4
toolkit. Our MC generator framework idea was born during this work. M. Komogorov would
like to express special thanks to W. Trzaska for collaboration during his work at Physics
Department of the Jyviskyld University.
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17. FRAMEWORK WORKING EXAMPLES

With the aim to illustrate possible framework user and developer sessions we show several
examples: The first is an example of the framework main function, which can be applied in
the case of the command line user interface. This example explains the dispatcher importance.
Then comes the example of the runnable algorithm component frame illustrating a user and a
developer works with the parameters, the input maps and the output configurations. We show
also the example, when a user is able to substitute a model component by the alternative
model component. Finally, we would demonstrate an example of the heavy ion collision
simulation performed within the Pomeron based Parton String Model (see the model physics
description [4]).

17.1. Dispatcher at Weork. Let us look at the first example. As a result of this main
function execution a user can obtain the list of the model components (see file «Content.hm»)
as well as the information about registered (the model ID has been assigned) model parameters
(«.nmp» file), model input maps («.nmi» file) and model output configuration («.nmo» file).
The corresponding files can be edited. Model user can execute registered model and obtain
the configured output, i.e., the result of the hadronic reaction simulation, which will be written
on an output file («.nmd»). In this example of the main function one can see the key role of
the dispatcher. It is doing all control job, which is hidden from a user.

#include <iostream.h>
#include "NM.h"
#define MAX_BUFF 256

void main(int cArg, char* aArg(l)
{
Dispatcher.RegisterFactory(};
if (cArg < 2)
{
cout << "To get help, please, use:\n"
"<NiMax -I> - list of components\n”
"<NiMax -I ID [-iMapFName] [-pParamFName] [-oOutFName]>\n"
" Subkey:\n"
-i - Input maps\n"
-p - Parameter list\n"
-0 - Qutput configuration tree\n"
"To Tun a component, please, use:\n"
"<NiMax -R ID [-iMapFName] [-pParamFName] [-oQutFName] [DataFileName]>\n"
-i - Input map file\n"
-p - Parameter set file\n"
-0 - Output configuration tree file\n"
" DataFileName - QOutput file name\n";
return;
}
if (strcmp(aArgfi]l, "-I") == 0)
{

”

"
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if (cArg < 3)
{
Dispatcher.OutComponentsList("Content.nm");
return;
}
int ID = atoi(aArgl2]);
if (!Dispatcher.LoadModel(ID))
{
cout<<"There is no component with ID = "<< ID << endl;
return;
}
if (cArg < 4)
{
char Buff [MAX_BUFF];
itoa(ID, Buff, 10);
strcat (Buff, ".nmi");
Dispatcher.InputToTextStream(Buff);

itoa(ID, Buff, 10);
strcat(Buff, ".nmp");
Dispatcher.ParamToTextStream(Buff);

itoa(ID, Buff, 10);
strcat(Buff, ".nmo");
Dispatcher.OutputConfigToTextStream(Buff) ;
return;
}
for(int c1 = 3; cl < cArg && cl < 6; cl++)
{
if (strnicmp(aArgl[ci), "-i", 2) == 0)
Dispatcher.InputToTextStream(aArgfc1] + 2);
if (strnicmp(aArglc1], "-p", 2) == 0)
Dispatcher.ParamToTextStream(aArg[cl] + 2);
if (strnicmp(aArglcil, "-o", 2) == 0)
Dispatcher.OutputConfigToTextStream(aArg[c1] + 2);
}
}
if (strcmp(aArg[1], "-R") == 0)
{
if (cArg < 3)
{
Dispatcher.OutComponentsList("Content.hm");
cout<<"\nPlease! Set the ID\n";
return;
}
int ID = atoi(aArg[2]);

71
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if (!Dispatcher.LoadModel(ID))

{

cout<<"There is no component with ID = "<< ID << endl;
return;

}

for(int c1 = 3; cl < cArg &% cl < 6; cl++)

{
if (strnicmp(adrglcl], "-i", 2) == 0)
Dispatcher. InputFromTextStream(aArgfc1] + 2);
if (strnicmp(aArglci], "-p", 2) == 0)
Dispatcher.ParamFromTextStream(aArg[cl] + 2);
if (strnicmp(aArglci], "-o", 2) == 0)
Dispatcher.OutputConfigFromTextStream(adrglci] + 2);
}
Dispatcher.Run("kyky.nmd") ;
}

17.2. Runnable Model Component Frame. As we already said, a model developer to
create a model component can start the component implementation by editing the suitable
model component frame. For example, the runnable algorithm component can be used. Its
header and implementation are shown below. We shall assume that all members are public
to simplify the discussion; the extension to protected and private is not straightforward. We
plan to explain it in the extended description [6] of our framework. Let us at first explain
the parameter, input and output parts of the runnable model component. Below we consider
implemented parts of runnable component for the hadronic string decay model. This model
performs string decay simulation, i.e., it models the process, when a string with the parton
ends and its mass decays into stable and resonance hadrons (see the model physics description
in [4]).

17.2.1. How to Define, Edit and Check the Model Component Parameters? In order to
define parameter one has to declare the member of component class. There are corresponding
commented lines in the runnable component frame (see below). Let us consider a part of the
NMStringDecayer model component header. Within it we declare two double parameters:
DiquarkSuppression and ClusterMass.

class NMStringDecayer : public NMAlgorithm

{
public:
DEFAULT_LOCAL_DEFINITION (NMStringDecayer, NMAlgorithm);

public:
// Messages

public:
// Proxy



Amelin N., Komogorov M. An Object-Oriented Framework for the Hadronic 73

public:
// Parameters
NMDoubleParam ClusterMass;
NMDoubleParam DiquarkSuppression;
public:
// Input

public:
// ProgramEvent

public:
// Methods

};

The framework is able to control these parameters, if they are registered by the OnRegister-
Param() method. Below we show an example of the method implementation.

void NMStringDecayer::0OnRegisterParam()
{
Add(ClusterMass.Init (200908, "Cluster mass", 0.15, GeV, "GeV"));
Add(StrangeSuppress.Init (200910, "Strangeness suppression”, 0.44));

}

Within the command line user interface the component parameters can be written on the
file with the extension .nmp and read from it. Below we show the content of .nmp file for the
registered parameters from the above examples.

"NMStringDecayer”, 2009
{
"Cluster mass", "GeV", 200908, 0.15;

"Strangeness suppression", "", 200910, 0.44;
}

We can edit this file, e.g.

"NMStringDecayer®, 2009
{
"Cluster mass", "GeV", 200908, 0.18;
"Strangeness suppression", "", 200910, 0.40;

3

This file can be used as the parameter of the framework execution file. Let us call it as the
NiMax.exe. Also framework gives a possibility to check edited parameter consistency. For
this purpose a developer can overload the OnCheck() method, e.g.,
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bool NMDoubleMinMaxParam:: OnCheck()
{
if (Value < Min || Value > Max)
{
Warning(123,ERR_GROUP, "Parameter value is out of range. Default value
will be used");
return false;
}

return true;

}

17.2.2. How to Define, Edit and Check the Model Component Input Maps? The definition
of an input map is similar to the parameter definition, besides that, one has at first to declare
input map. One can find the corresponding comment about it in the example of the runnable
component frame (see below). Let us consider an example of the input map InputMapl
declaration for the string decay component. This map has three fields: LeftfQuarkEncoding,
RightQuarkEncoding, and StringMass.

class NMStringDecayer : public NMAlgorithm
{
public:
DEFAULT_LOCAL_DEFINITION(NMStringDecayer, NMAlgorithm);

public:
// Messages

public:
// Proxy

public:
// Parameters
NMDoubleParam ClusterMass;
NMDoubleParam DiquarkSuppression;

public:
// Input
NMInputMap InputMapl;

NMIntParam LeftQuarkEnc;
NMIntParam RightQuarkEnc;
NMDoubleParam StringMass;

public:
// Methods

};
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Similar to the parameters, an input map and its content have to be registered. There is
the method OnRegisteredInputMap() for that. Below we show an example of this method.

NMStringDecayer:: OnRegisterInputMaps()

{

NMAlgorithm:: OnRegisterInputMaps();

AddMap(InputMapl.Init (2009100, "Input map 1 for string decayer "));

InputMapl.Add(LeftQuarkEnc.Init (2009101, "Left quark encoding", 2,
"Encoding"));

InputMapl.Add (RightQuarkEnc.Init (2009102, "Right quark encoding”, 2201,
"Encoding"));

InputMapl.Add(StringMass.Init (2009103, "String mass", 200, GeV, "GeV"));
}

In command line user interface version this map can be written on the file with the
extension .nmi and read from it. Let us look at the content of the .nmi file as a result of the
input map registration, which was considered above.

"Input map 1 for string decayer ", 2009100

{

" Left quark encoding ", "Encoding", 2009101, 2;

" Left quark encoding ", "Encoding", 2009102, 2212;
" String mass ", "GeV", 2009103, 200;

}

It is possible to offer different input maps for one component. For example, we can add
the string momentum for string decay. To do that we have to add the declaration of new map
and new input map values.

When somebody uses the input maps, then a map from the set of maps should be
registered as the default map by the OnRegisterInputMap() method. If it is not done, then the
framework will consider the first registered input map as the default one.

There can be some dependences between input or parameter values. For example, on
string ends should be quarks with the opposite colours. To solve this problem, each runnable
component supports methods OnCheckParam() and OnChecklnput(). An example of the
OnCheckinput() implementation is shown below.

NMStringDecayer:: OnCheckInput(NM_ID ID)
{
if (IsColor(LeftQuarkEnc) && IsAntiColor(Right QuarkEnc) ||
IsAntiColor (LeftQuarkEnc) && IsColor(Right QuarkEnc))
return NMAlgorithm:: OnCheckInput (ID);
Warning(127, ERR_GROUP, "String end quarks have the same colours");
return false;

3

17.2.3. How to Define and Edit the Output Configurations? We have already discussed
that the output is performed by means of program events. Each event has to be declared.
There is appropriate comment in the runnable component frame.
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In the example, which is shown below, we add two program events for the NMStringDe-
cayer component named /nitialState and FinalState.

class NMStringDecayer : public NMAlgorithm
{
public:
DEFAULT_LOCAL_DEFINITION(NMStringDecayer, NMAlgorithm);

public:
// Messages

public:
// Proxy

public:
// Parameters
NMDoubleParam ClusterMass;
NMDoubleParam DiquarkSuppression;
public:
// Dutput
// ProgramEvent

NMProgramEvent InitialState;
NMProgramEvent FinalState;

public:
// Input
NMInputMap InputMapl;

NMIntParam LeftQuarkEnc;
NMIntParam RightQuarkEnc;
NMDoubleParam StringMass;

public:
// Methods

};

After declaration of the program events, they have to be registered. Within the command
line version of the user interface the registered output configuration will appear in the .nmo
files. Below we show the part of this file for the NMStringDecayer example.

"NMStringDecayer", 2009
{
"Initial state", 20090001, Off
{
"Particle", 20, On
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{
"Moving particle”, "MovingParticle", 10, On
{
"X-position", "X", "fermi", 101, On;
"Y-position", "Y", "fermi", 102, On;
"Z-position", "Z", "fermi", 103, On;
"T-position", "T", "fermi", 104, On;
"X - component of Lorentz momentum", "PX", "GeV", 105, On;
"Y - component of Lorentz momentum", "PY", "GeV", 106, On;
"Z - component of Lorentz momentum", "PZ", "GeV", 107, On;
"Energy", "E", "GeV", 108, On;
}
"Encoding”, "Enc", "Encoding", 301, On;
}
"Particle", 20, On
{
"Moving particle", "MovingParticle", 10, On
{
"X-position", "X", "fermi", 101, On;
"Y-position", "Y", "fermi", 102, On;
"Z-position", "Z", "fermi", 103, On;
"T-position", "T", "fermi", 104, On;
“X - component of Lorentz momentum", "PX", "GeV", 105, On;
"Y - component of Lorentz momentum”, "PY", "GeV", 106, On:
"Z - component of Lorentz momentum", "PZ", "GeV", 107, On;
"Energy", "E", "GeV", 108, On;
}
"Encoding", "Enc", "Encoding", 301, On;
}
"String Mass", "Ecms", "GeV", 2009555, On;
}
"Final state", 20090002, On
{
"Particle", 20, On
{
"Moving particle", "MovingParticle", 10, On
{
"X-position", "X", "fermi", 101, On;
"Y-position", "Y", "fermi", 102, On;
"Z-position", "Z", "fermi", 103, On;
"T-position”, "T", "fermi", 104, On;
"X - component of Lorentz momentum”, "PX", "GeV", 105, On;
"Y - component of Lorentz momentum", "PY", "GeV", 106, On;
"Z - component of Lorentz momentum", "PZ", "GeV", 107, On;
"Energy", "E", "GeV", 108, On;
}
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"Encoding", "Enc", "Encoding", 301, On;
}

}

Using the On/Off words one can open or close a channel to write it on the output file.
Finally, at the end of this subchapter we show an example of the runnable model com-
ponent.

#ifndef _ClassName_
#define _ClassName_ 1

#include <NM.h>
//#include "ClassParentName.h" // Edit this line, if you use subclassing.

// Here, include the header files for each used child component.
//#include "ChildComponentName.h"

DEFAULT_GLOBAL_DEFINITION(ClassName, ClassParentName)

class ClassName : public ClassParentName
{
public:
DEFAULT_LOCAL_DEFINITION(ClassName, ClassParentName);

public:
// Messages
virtual void OnOverloadDefaultProxy();
virtual void OnCreate();
virtual void OnDestroy();
virtual void OnRegisterParam();
virtual void OnOverloadDefaultParam();
virtual void OnRegisterQutputConfig();
virtual void OnOverloadDefaultOutputConfig();

virtual void OnRegisterInputMaps();
virtual bool OnRun(unsigned, NM_ID);

public:
// Proxy

//NMAlgorithmProxy < ChildComponentClass > ChildComponentVariable;
// Repeat the previous line for each used child component.

public:
// Parameters
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// Here, define the parameters.
NMDoubleParam P1;

public:
//Cutput
// ProgramEvent

//Here, define the program events.
NMProgramEvent Eventil;

public:
// Input

//Here, define the input maps.
NMInputMap Mapil;

NMIntParam IP11;
NMIntParam IP12;
NMDoubleParam IP13;

NMInputMap Map2;

NMIntParam IP21;
NMIntParam IP22;
public:

// Methods

// Your methods and data members.

};
#tendif

#include "ClassName.h"

// Here, define name of your component and its own ID.

79

BEGIN_RUNNABLE_IMPLEMENTATION(ClassName, ClassParentName, ID , "ClassName")

{

// If you want to provide the full information about yourself,

// please, use this structure.

DEVELOPER("Physics design",//Explain your participation in the compo-

nent development.
"FirstName SecondName Surname", // Your full name
"Nickmame", // Your nickname
"kykyl@cern.ch", // Your e-mail
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"www.cern.ch", // Your WEB home page
"7-096-216-53-18", // Your phone number
"7-096-216-53-18") ; // Your FAX number

b

// If you do not want to provide the full information about yourself

// please, use this structure.
Developer.Comment ("Software design");
Developer.Name("FirstName SecondName Surname");
Developer.NickName("NickName") ;
Developer.e_mail("kykyl@cern.ch");
Developer.HomePage("www.cern.ch");
Developer.Phone("7-096~216-53-18") ;
Developer .FAX("7-096-216-53-18");
Add(Developer) ;

// Repeat previous lines for each developer.

// Here, define the HTML pages, where your component is described.
WEBPAGE ("\\MyComponent\\Documentation\\Filel.html",
//Path for the HTML file.
"Physics reference"); // Explain the HTML file content.

WEBPAGE ("\\MyComponent\\Documentation\\File2.html",
"Software reference");
// Repeat previous lines for each reference.
+
END_RUNNABLE_IMPLEMENTATION(ClassName, ClassParentName)

// Proxy

void ClassName: :0OnOverloadDefaultProxy()
{
ClassParentName::OnOverloadDefaultProxy();
// Here, you can overload the child components
// OverloadProxy(<NewComponentID>, <Path>, 0);
// Path is the list of IDs
}

//Create and destroy

void ClassName: :0nCreate()
{
ClassParentName: :OnCreate();
//Here, load the needed data
}

void ClassName::0OnDestroy()
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{
// Release the data, which were allocated by the previous method.
ClassParentName: :OnDestroy();

}

void ClassName: :0OnRegisterParam()
{

ClassParentName: :OnRegisterParam();

// Here, register your component parameters.
Add(P1.Init (201301, "Name of parameter”, 0.45, GeV, "GeV"));
// Repeat previous line for each parameter.

}

void ClassName: :0nOverloadDefaultParam()
{

ClassParentName: :OnOverloadDefaultParam() ;

//Here, you can overload default parameter values

// for child components.

// OverloadDoubleParam(<NewValue>, <ParameterID>, <Path>, 0);
// Path is the list of IDs.

}

// Output

void ClassName::0OnRegisterDutputConfig()
{
ClassParentName: : OnRegisterQutputConfig();

AddEvent (Eventl, 2013001, "Name of event");

// NMParticle::Config(Event1);

// NMParticlePtrVect::Config(Eventl);

// Eventl.AddDouble(1300, "Centre mass system energy", "Ecms", "GeV");

}

void ClassName: :0OnOverloadDefaultOutputConfig()
{
ClassParentName: : OnOverloadDefaultQutputConfig();
}

// Input
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void ClassName: :OnRegisterInputMaps()
{
ClassParentName: :OnRegisterInputMaps();

//Here, register input maps and their contents

AddMap(Map1.Init (2013100, "Mapl name"));
Map1l.Add(IP11.Init(2013101, "P11 Name", 2212, "Encoding"));
Map1.Add(IP12.Init(2013102, "P12 Name", 2212, "Encoding"));
Mapl.Add(IP13.Init(2013103, "P13 Name", 200, GeV, "GeV"));

AddMap(Map2.Init(2013200, "Map2 name"));

Mapl.Add(IP21.Init (2013201, "P21 Name", 2212, "Encoding"));
Map1.Add(IP22.Init (2013202, "P22 Name", 2212, "Encoding"));
Mapl.Add(IP13); // This variable has already been initialized

aInputMap.Default = 2013100; // default input map
}

bool ClassName::OnRun(unsigned ParentCounter, NM_ID MapID)
{
if (MapID == Mapl.ID)
{
// Your code
return true;
}
if (MapID == Map2.ID)
{
// Your code
return true;
}
return ClassParentName::0OnRun(ParentEventCounter, MaplD);

}

// Your code

17.3. How to Substitute a Model Component? Let us assume, that we have created the
NiMaX.exe execution file ( see also the main function example). Let us assume, that we have
main component with its identifier value 20/3 and two child alternative model components,
which are registered with the values of their identifiers: 2009 and 2015, respectively. Let us
replace the 2009 component by the 20/5 component. At first one should run the command:
NiMax -1 2013 to obtain the file 2013.nmp, where the 20/3 component tree with parameters
can be found. Then one should run the command: NiMax -1 2015 and obtain the file 2015.nmp
with the component parameter tree for the 2015 component. Then within an editor one has
to replace the parameter branch 2009 in the 20/3 component parameter tree by the 2075
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tree. After that one should run command: NiMax.exe -R 2013 -i2013.nmi -p2013 nmp.to get
generated physical events.
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Figure. Space-time distribution of the produced hadrons

17.4. Central Uranium-Uranium Collision Simulation. For the last example we have
performed the simulation of central uranium on uranium collisions at the centre of mass
energy 6500 GeV per nucleon within the Pomeron based Parton String Model (see physics
description in [4]). This model is a complicated model and it was composed of 12 different
components.

We have simulated 10 events and created 2-dimensional distribution of the produced
particles in space-time (the Z-direction is the beam-direction), which is shown in the Figure.
The particle coordinates are calculated at particle freeze-out times. We did not separate the
negligible impact of possible spectator nucleons.
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